SW-16-v2

Version 2.0 - July 5, 2017

General Description:

SW-16 boards are used to deliver switch state information in a pinball machine to a master device, such as a P^{3}-ROC board, over an RS-485 serial bus.

SW-16 Details:

The SW-16 has two banks of 8 switch inputs. Each input has a 6 v comparator circuit, which determines the state of the switch connected to the input. If the voltage is below 6 v , the state of the switch is ' 0 '. Otherwise the state of the switch is ' 1 '. Each input also has a pull-up resistor, forcing the state to ' 1 ' when nothing is connected to the input.

In addition to the switch input circuits, The SW-16 has a bidirectional RS-485 transceiver, 6 address dipswitches, and a complex programmable logic device (CPLD). The RS-485 transceiver converts RS-485 signals to digital logic signals (and vice versa) so the CPLD can communicate on the RS-485 bus. The CPLD responds to host-initiated commands when the command's address matches the value set on the 6 address dipswitches. The only commands currently supported are register read commands.

Connectors:

J1	Power	Required	
3-pin Molex: 0.156" spacing			
1	KEY	N/A	
2	12V	I	
3	Ground	I	

J2	Bank A Switch Inputs	Required if using Bank A
10-pin Molex: 0.100" spacing		
1	12V	O
2	Bank A - Switch 0	I
3	Bank A - Switch 1	I
4	Bank A - Switch 2	I
5	Bank A - Switch 3	I
6	Bank A - Switch 4	I
7	Bank A - Switch 5	I
8	Bank A - Switch 6	I
9	Bank A - Switch 7	I
10	Ground	O

J3	Serial Data In	Required	
3-pin Molex: 0.100" spacing			
1	Ground	I	
2	Serial Data +	I	
3	Serial Data -	I	

J4	Serial Data Out	Not Required
3-pin Molex: 0.100" spacing		
$\mathbf{1}$	Ground	0
2	Serial Data +	0
3	Serial Data -	0

J6	Bank B Switch Inputs	Required if using Bank B
10-pin Molex: 0.100" spacing		
1	12V	O
2	Bank B - Switch 0	I

3	Bank B - Switch 1	N/A
4	Bank B - Switch 2	I
5	Bank B - Switch 3	I
6	Bank B - Switch 4	I
7	Bank B - Switch 5	I
8	Bank B - Switch 6	I
9	Bank B - Switch 7	I
10	Ground	O

Addressing:

In order to receive the correct data from the P-ROC, each board's address needs to be set appropriately. The following table describes how to use the dipswitches to set the board address:

Dipswitch	Meaning
1	Address bit 0*
2	Address bit 1*
3	Address bit 2*
4	Address bit 3*
5	Address bit 4*
6	Address bit 5*
7	ID bit 5

*On=1, Off=0

Board ID:

The board ID is a value that can be read by software, and it is configurable via the following dipswitch and resistor placement options:

ID bit	Resistor (for 0/1)
0	R84 / R90
1	R86 / R91
2	R87 / R92
3	R88 / R93
4	R89 / R94

Serial Chain Termination:

The last board in the physical chain (not necessarily the highest address) needs to be set to terminate the serial chain. This is done by setting dipswitch 8 on.

Status LEDs:

LED	Meaning
D5	12 V
D6	3.3 V
D8	CPLD Operational

Dipswitches:

Switch	Meaning*
1	Address bit 0
2	Address bit 1
3	Address bit 2
4	Address bit 3
5	Address bit 4
6	Address bit 5
7	ID bit 5
8	Terminate serial bus

$\mathrm{On}=1, \mathrm{Off}=0$

Registers:

Device Type	Address 0x0	
Bits	Field	Default
$7: 0$	Device Type	$0 \times A 3$

Board ID		Address 0x1
Bits	Field	Default
$7: 0$	Board ID (configurable - see Board ID section above)	N/A

Bank A Switches		Address 0x2
Bits	Field	Default
$7: 0$	Board A Switch States	0xFF

Bank B Switches		Address 0x3
Bits	Field	Default
$7: 0$	Board B Switch States	$0 x F F$

Example Usage:

*Power for the transmitter in an opto switch need not be the same power that powers the SW-16 board. Opto transmitters typically require incoming current to be limited with an appropriately sized resistor.

Getting Started:

Hardware

- Mount the board using the 4 mounting holes (M3 or 4-40 screws).
- Connect a 12 V supply to J1.
- Connect J3 to the previous board in your chain using a 2 -wire cable. If the boards are separated by more than a few feet, a shielded \& twisted pair is recommended. For short runs, any 2-wire cable should suffice.
- If using Bank A :
- Connect your Bank A switches to J2.
- If using Bank B:
- Connect your Bank B switches to J6.

Software

- If using a P3-ROC:
- Once configured, the P3-ROC can automatically scan the SW-16 board for switch state changes. Switches map to P3-ROC switch numbers according to the following equations:
- Bank A switch: P3-ROC switch \# = SW-16 address * 16 + Bank A switch input \#
- Bank B switch: P3-ROC switch \# = SW-16 address * $16+8$ + Bank B switch input \#
- SW-16 registers can also be read directly from software. Refer to the P3-ROC FPGA Specifications for more details.

